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Abstract— Object detection when viewing Head Mounted 

Display (HMD) imagery for maritime Search and Rescue 
(SAR) detection tasks poses many challenges, for example, 
objects are difficult to distinguish due to low contrast or low 
observability. We survey existing Artificial Intelligence (AI) 
image processing algorithms that improve object detection 
performance. We also examine central and peripheral vision 
(HVS) and their relation to Field of View (FOV) within the 
Human Visual System when viewing such images using HMDs. 
We present results from our user-study which simulates 
different maritime scenes used in object detection tasks. Users 
are tested viewing sample images with different visual 
features over different FOVs, to inform the development of an 
AI algorithm for object detection.  
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I. INTRODUCTION 
Maritime Search and Rescue (SAR) involves scanning an 

open water scene to achieve situational awareness and 
identification of objects of interest such as humans, vessels 
or landmarks. We investigate whether SAR tasks can be 
improved by viewing real-time still or video imagery 
captured via 360° panoramic cameras via HMDs. 
Increasing use of technology such as drones makes possible 
visual image capture of locations otherwise not accessible.  

We use a camera system that performs automated capture 
of high resolution 8K real-time uncompressed 360° digital 
video. The camera system’s daylight and lowlight sensors 
allow images to be captured in varying weather and 
environmental conditions. For example, in rain, fog, or 
night-time. Playback and magnification are available. Fig. 
1 illustrates the different SAR imagery with varying FOVs. 

Other display modalities including large-scale immersive 
displays and desktop monitors have been investigated by the 
authors [1]. Although, large-scale immersive displays 
provide good speed and accuracy results for object 
detection, their physical space requirements mean that the 
HMD modality is more suitable for operational scenarios. 

To determine the HMD modality’s effectiveness, we 
investigate visual acuity of the central and peripheral vision 
of the Human Visual System (HVS) by varying the 
horizontal Field of View (FOV) of the scene. We survey 
existing Artificial Intelligence (AI) image processing 
techniques used for object detection in maritime scenes. 

This ‘cognitive easy understandable big data’ [2] 
application eases the cognitive load of SAR users where 
visibility, contrast and brightness are often low, and objects 
difficult to detect. We discuss the limitations of the human 

                                                        
1 HTC Vive, 2018. Available: https://www.vive.com/au 

visual system when using HMDs, present a user study to 
examine different image presentations over different FOVs, 
and discuss how AI can improve object detection tasks. 

II. MARITIME SEARCH AND RESCUE IMAGERY 
Objects can be difficult to observe due varying SAR 

imagery quality. For example, scenes can be low contrast, 
low light (fog, cloud cover), night-time, display incorrect 
brightness (excess sun reflection off water), 
indistinguishable regions (white sky and snow), or high 
frequency objects (rain, water and waves). Objects may also 
be far away (e.g. 1-5 km), small and indistinguishable. The 
interpretation of the objects can require human verification.  

Whilst the horizontal FOV of maritime SAR images is 
360°, vertical FOV is limited as the camera array may 
operate in unstable conditions, where only a narrow vertical 
band of footage can be accurately stitched and cropped.  

 

   
Figure 1. SAR imagery showing 30°, 70°, 85° FOVs. 

III. UNDERSTANDING THE HUMAN VISUAL SYSTEM 

A. Visual Acuity (Pixel Density and Retinal Resolution) 
Visual acuity in HMDs can be measured in Pixels per 

Degree (PPD). Retinal resolution is the pixel density where 
humans with normal vision cannot see any additional 
detail, generally 60 Pixels per Degree (PPD) (20/20 vision) 
[3]. Sensors capturing pixel densities greater than 60 PPD 
capture more information than can be visualised by the 
average HVS. HMDs offer sufficient spatial resolution to 
present imagery accurately, most in the range 10-15 PPD 
(horizontal monocular FOV) e.g. HTC Vive Pro 1  with 
13PPD. Visual acuity can be affected by object brightness 
and speed, peripheral vision and eye movement. Retinal 
resolution is dependent on viewing distance between the 
eye and display, also affecting FOV.  

B. Central and Peripheral Vision  
The HVS provides a high visual acuity, wide FOV 

(~190°) comprising of central and peripheral vision [4]. 
High visual acuity central vision is achieved by cone cells 
in the retina’s central fovea (1-2°). Cone cells detect colour, 
fine detail, and are responsive to stimuli. Peripheral vision 
uses rod cells which have low visual acuity, low-light 
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visibility, and reduced colour perception. Peripheral vision 
is effective at detecting motion as peripheral flickering [5].  

In our experiment, we test central and peripheral vision 
by specifying the HMD’s FOV. In the visual search task, 
peripheral vision is first used to analyse the scene, areas of 
interest are identified, and then central foveal visual 
analysis identifies the object [6][7]. The central foveal 
region performs spatio-temporal scanning sampling at five 
samples per second in high resolution. By varying the FOV 
in our experiment, we examine the capacity of 
central/peripheral vision in executing the object detection 
task. Object detection is also dependent on object size, 
shape, colour, frequency, and likelihood of occurrence. 

In addition, we use edge detection algorithms to 
enhance visibility of features in the image, by looking to 
work such as Peli et. al. [8][9], who assist those with central 
vision loss (scotoma) by superimposing a magnified edge 
detected image over the top of the real-world, viewed via a 
see-through HMD. This increases the effective resolution 
of residual peripheral field. They also assist those with 
tunnel vision by presenting minified edge detected images 
to increase the horizontal span seen instantaneously.  

C. Field of View (FOV) in HMDs 
HMD’s can render a wide horizontal FOV, e.g. the HTC 

Vive at 110°2 (although in practice we measure FOV to be 
90°). However, this FOV is smaller than a user’s natural 
~190° FOV, therefore, the user must turn their head to see 
the full virtual environment (i.e. Field of Range (FOR)). 
Larger FOV and FOR increases the perception of 
immersion [10]. However, if head motion latency is high, 
this will reduce immersivity and potentially induce Virtual 
Reality (VR) sickness [11].  

We test users viewing scenes with 30°, 70°, 85° FOVs 
(Fig. 1). These FOVs are chosen based on 
recommendations in different domains under different 
conditions, e.g. Patterson et al. [12] suggests a minimum 
40° FOV for object identification tasks, and Angel et al. 
[13] find wide FOV’s are beneficial in target detection 
related tasks in military operations on land. They test day- 
and night-vision HMDs at 40°, 70° and 95° FOVs in an 
urban environment, at near (10-30m) and far (31-59m) 
target ranges. They find FOVs greater than 95° enabled 
detection tending towards ‘normal vision’ (~190° FOV) and 
showed significant improvement over a 40° FOV for targets 
that are far away and occluded. Ragan et. al. [14] also show 
that increased FOV allows more targets to be detected in 
their training task.  

IV. AI TECHNIQUES FOR IMAGE ANALYSIS 
Computer vision image processing often employs AI in 

object detection and scene analysis, as e.g. neural network-
based image analysis. Of interest are image processing 
algorithms used to enhance images where FOV is 
considered e.g. Everingham et. al.’s work [15] builds on 
traditional methods for image enhancement i.e. adaptive 
filtering edge detection used by Peli et al. (see [8], [16], 
[9]). Everingham et al. use image segmentation, feature 
extraction and neural net classifier to remove noise to 
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enhance images in a scene viewed in HMDs, for low vision 
users (e.g. scotoma and tunnel vision). This provides 
semantic meaning in the scene e.g. assigning different 
colours to objects (road, footpath, sky or cars). Other 
features include making an object flash to alert the viewer, 
perhaps to signal ‘danger’.  

Basic edge detection enhances features of the scene but 
provides little information regarding the relevance of the 
object, furthermore, undesirable noise can be introduced. 
We are motivated by Everingham et al.’s application of 
semantic meaning to objects, and therefore employ edge 
detection in the maritime scene, segmenting the image so 
areas such as sea or sky can be meaningfully identified; and 
removing sea clutter and lesser useful textures (wave, 
clouds), so that objects can be detected more easily. Many 
more AI and computer vision algorithms are used in video 
analysis for maritime object detection in low observable 
scenes, refer to a survey by Moriera et al. [17].  

V. USER-EXPERIENCE STUDY 
We create a user experiment to investigate the impact of 

different FOVs on peripheral and central vision (based on 
Everingham et al. [15] and Peli et al. [8][9]); and examine 
different image presentations to understand which image 
features require attention to increase human performance. 

A. FOV Simulator Implementation 
We implement a FOV simulator by generating a series of 

360° panoramic 8K resolution SAR test images allowing 
high visual acuity and providing a realistic simulation 
environment. The images are developed using the Unity3 
game engine. Fig. 2 shows sections of SAR imagery: (a) 
original maritime imagery showing environmental 
conditions (e.g. rough water) with an object located on the 
horizon; (b) edge detection (Canny filter) (features more 
visible); and (c) inverse edge detection (image 
segmentation of objects in scene (sea vs. sky), low contrast, 
and clutter and noise reduced).  

 

 
 

Figure 2. Three visual representations: (a) original; (b) edge 
detection (Canny filter) and (c) inverse edge detection. 

3 Unity, 2018. Available: https://unity3d.com 
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Three different FOVs (30°, 70°, and 85°) are tested to 
understand the effects of the central and peripheral vision on 
the operator. Objects (4-5 pixels) are at a constant distance 
(e.g. 1km) in the scene with random bearings. Participants 
have 15s to detect the objects while standing and wearing an 
HMD. The HMD used is the HTC Vive Pro, allowing good 
visual acuity (13PPD).  

B. User Experiment Design 
In each experiment we measure i) object detection speed 

and accuracy; ii) mental effort (NASA-TLX); and iii) scene 
memory, over different FOVs with three different 
experimental scene representations (original, edge 
detection, inverse). To gain an initial understanding of HVS 
constraints and develop a user-testing methodology, we 
tested only five subjects (2 female/3 male aged between 20-
50, mean age 37, possessing good visual acuity) to gain 
feedback on best scene representation techniques. We 
evaluate three FOVs, over three different image types, each 
over five random object bearings. 

Mental effort is measured using the NASA Task Load 
Index (NASA-TLX) [18][19], on a scale of 1-10, with six 
demand components (mental, physical, temporal, 
performance, effort, and frustration). Many participants 
overestimated the self-perceived performance component 
of mental effort. To reduce this bias, we remove the 
performance component in the evaluation, and weight it 
lower in the overall evaluation. Firstly, we compare initial 
NASA-TLX results without adjusting weighting 
components (see section ‘C’). For more meaningful 
average performance calculations, we weight performance 
and physical demand at 5% (compared to an original 
weighting of 22.5%) as these components reflect many 
participants’ self-perceived high performance and low 
physical demand. Therefore, the NASA-TLX and time 
performance statistics are normalised where higher 
percentage values indicate higher or better performance, 
and overall performance for different FOVs and image 
types are comparable. Figs. 3 and 4 show average 
performances vs. FOV/image categories. The normalised 
NASA-TLX shows mental performance is inverse to 
mental effort. 

 

 
 

Figure 3. Avg. performances vs. FOV/image categories. 

C. Perceived Mental Effort (NASA-TLX) 
While comparing different image presentations between 

different FOVs (see Fig. 5), we conclude that the 85° FOV 
requires the least mental effort. Effort, frustration, physical 
and temporal demand are overall consistently lower than 

that observed in 30° FOV for all image types. We observe 
that different image types have a high variation in mental 
effort metrics, where image type is significant for a small 
30° FOV, whereas lesser effect on mental effort is observed 
for wider FOVs. 

The 70° FOV, sitting between 30° and 85° FOVs presents 
interesting insights e.g. alternative image presentations are 
less frustrating, and temporal demand is lower in 
comparison to the original imagery. Physical demand is 
similar to that of the 30° FOV, as participants are required 
to move more to identify the object.  

We also compare mental effort for image types per FOV 
(see Fig. 5). Participants report the same perceived 
performance over different FOVs, while other factors vary. 
Lowest frustration levels, effort, temporal, physical, and 
mental demand are reported for 85° FOV. Edge detected 
images provide consistent metrics over the three FOV 
variations, and appear to outperform other image 
presentations (original or inverse). For inverse images, 
participants reported lower performance compared with the 
other two image types, whereas other metrics are equal or 
lower. For each image type, 85° FOV outperforms 
perceived mental effort in contrast to smaller FOVs. 
Interestingly the inverse image representations enable 
equal or lower frustration, mental demand, effort, temporal, 
and physical demand. 85° FOV inverse, appears the most 
effective viewpoint despite lower levels of reported 
perceived performance. 

D. Comparison of Total Time and Mental Performance 
Figs. 3 and 4 illustrate overall average performance of the 

study. Alternative image representations increase object 
detection time performance, thus decrease object detection 
times. Low mental performance (decreased mental effort) 
increase object detection times, while larger FOVs increase 
mental performance. Overall, original image 
representations only outperform other representations with 
FOVs>85°. Alternative image representations outperform 
original images when considering task completion times. 

Considering overall average performance (see Fig. 4), 
edge detection outperforms original and inverse 
representations in terms of mental performance, but 
alternative representations clearly outperform original 
image representations in terms of time performance. FOVs 
larger than 85° increase both, time and mental performance, 
but smaller FOVs decrease both. In other words, higher 
mental effort leads to shorter task times. 

 

 
 
Figure 4. Performance Comparison. 

E. General Observations 
85° FOV inverse appears the best image type and FOV 

in terms of required mental effort. The inverse 
representation has low contrast, less clutter and destruction 



in the scene. A FOV of 85° allows the user to explore a 
larger part of the scene at once through eye-gaze, without 
physical movement. Thus, head rotation can be performed 
in intervals, instead of continuously as e.g. in the case with 
smaller FOVs. This indicates that peripheral vision is used 
to scan the scene, and then high acuity central vision 
isolates the object. The larger the FOV, the more the 
peripheral vision can be employed to assist object 
detection. Smaller FOVs constantly employ central vision, 
and peripheral vision is of little assistance.  

Inverse image representations are lower contrast, thus 
less distracting, with fewer dominant visual objects in the 
foreground. This means that the user can focus on the 
horizon line, where the object is likely to be. Less clutter 
implies lower mental load, as the clutter in the scene is 
removed, similar to the effect of background subtraction 
e.g. used in motion detection. Edge detected image 
representations increase clutter in the scene, and higher 
contrasts, thus increasing the mental load. Original image 
representations suffer, as there is much confusion around 
waves, undefined objects, and reduce focus.  

It is also important to note that subjects utilised different 
search strategies – some used continuous scanning, others 
rotated their heads and scanned the whole scene, then 
rotated their head again by the angle of the FOV to scan the 
newly presented scene. Nevertheless, higher mental effort 
leads to better performances in form of shorter task times.  

Whilst subjects may believe original image presentations 
enable them to perform better while requiring lower mental 
effort, our results clearly show the opposite. 

 

 

 
 

Figure 5. FOVs vs. Image Types. 

VI. CONCLUSION AND FUTURE WORK 
We investigate the limitations of the HVS for maritime 

SAR imagery in HMDs and present some early results 
evaluating different FOV and image representations. In 
future work we will focus on developing advanced AI image 
processing algorithms for our existing software simulation 
and extend the user-study towards a larger audience. We are 
developing a video-based prototype and will examine the 
effect of motion in imagery as we extend our experiments 
from images to videos. We will employ new test methods 
including eye-tracking to understand scanning patterns and 
saccades, and utilise biofeedback devices [20].  
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